找回密码
立即注册
发新帖

0

收听

0

听众

30

主题
发表于 2025-8-29 20:10:28 | 查看: 157| 回复: 4
犬科动物互交可孕性一览表(Canid Interfertility Chart)V2.0 by 喜乐蒂乐乐

★重要!本表使用说明【请仔细阅读】★

1、对各物种间不同的互交可孕性,大致用下列不同底纹颜色表示(从上到下,远交衰退大致由弱到强):                                                                                                                                       
多代可育        指该两物种间有明确的互交产生多代可育子代的记录,并在自然界中亦检出明确的近期杂交证据,即该亲本间生殖隔离,亲缘关系极近

野外存在        指目前无两者或其子代杂交实验的报道,但有充分且持续至今的基因交流证据,这意味着杂合子在自然界大量存在且可育生殖隔离,亲缘关系极近

可育        指两者在自然界中缺乏近期基因交流证据,但是有明确的互交产生可育子代的记录,即二者远交衰退不显著,关系很近,但未来可能出现生殖隔离倾向;

可能        指目前无两者杂交子代记录,野外交流证据亦不足,但这是由于濒危或地理隔离等故导致难以杂交,但遗传学证据表明其关系较近,杂交有产生子代可能

未知        指虽有两者杂交记录,但不完整、不可靠或细节遗失;或者虽有基因交流证据但很古老,或者虽有近期遗传学证据但不足/不可靠,因此未知

仅子代        指该两物种间有明确的互交产生可稳定存活,但子一代即不育或生育力极微弱的记录,即该亲本间存在明显的生殖隔离,亲缘关系较远

子代死亡        指该两物种之间有明确的互交产生子代,但子代在分娩后短时间内即全部死亡的子代的记录,即该亲本间存在强烈的生殖隔离,亲缘关系

灰色空白        指没有两者杂交子代的记录,同时遗传学证据表明二者分化久远,这通常意味着二者存在强烈或严格的生殖隔离,不太可能产生正常子代,亲缘关系

2、中括号[]中的数字指该数据来源对应的参考文献序号。                                                                                                                                       

3、许多犬科动物的分类学地位存在争议或改变,对于这些物种,其争议、备选及过去曾用的拉丁名列在“拉丁学名2”、“拉丁学名3”、“拉丁学名4”中供参考。

4、通常两物种的亲缘关系越近,配子越相容、可育,且后代往往能保持较强的生育能力,如灰狼*家犬、郊狼*灰狼、草原狐*敏狐等等,子代沿伸数代皆保持可育;而亲缘关系越远,杂交愈趋向困难,直至难以产生后代,如北极狐*赤狐杂交的子代仅有极微弱生育力或不育;而非洲野犬与家犬很可能无法得到杂交子代。但是需要注意

(1)不同的物种,远交衰退有时并不是非常剧烈。而父母本不育亦有可能是形态分化的结果。杂交证据只能作参考,而不能一锤定音;

(2)杂交实验可能受多种因素影响,子代所表现出的更弱甚至更强的生育力也有可能是实验误差或其他因素造成的;

(3)若没有生殖隔离的物种受地理隔离等因素影响无法交流,即使现在还未形成生殖隔离,但随着漫长的时间推移、各自独立演化,最终仍可能形成生殖隔离;

(4)若没有生殖隔离的不同物种能够得到充分交流,也有可能产生新的物种,如非洲金狼就是由古代灰狼与埃塞俄比亚狼杂交演化的产物,东加拿大狼也类似;

(5)不同物种间并非必需存在生理学上的生殖隔离,但只要行为学上不发生自然杂交,仍视为不同独立物种,如灰狼与郊狼,虽然配子相容,但很少自然杂交;

(6)更准确的亲缘关系建议关注通过基于线粒体基因、核基因等数据建立的系统发育树,但是由于种种原因,不同文献给出的发育树不完全相同,仅供参考。               

表格在二楼:

发表于 2025-8-29 20:16:34
a.png
犬科动物互交可孕性一览表 V2.0(点击查看原图)


发表于 2025-8-29 20:20:10
参考文献:

[1] C. Sillero-Zubiri, M. Hoffmann, D. W. Macdonald, Canids: Foxes, Wolves,Jackals and Dogs. IUCN/SSC Canid Specialist Group, 2004.
[2] G. Lavigne, Free Ranging Dogs - Stray, Feral or Wild? First Ed., Lulu Press, Inc., 2015.
[3] D. A. Hungerford, R. L. Snyder, Chromosomes of a European wolf (Canis lupus) and of a Bactrian camel (Camelus bactrianus). Mammal. Chrom. Newsl. 1966, 20, 72.
[4] K. Benirschke, R. J. Low, Chromosome complement of the coyote, Canis latrans. Mammal. Chrom. Newsl. 1965, 15, 102.
[5] P. V. Ranjini, The chromosomes of the Indian Jackal (Canis aureus). Mammal. Chrom. Newsl. 1966, 19, 5.
[6] D. H. Wurster, K. Benirschke, Chromosome studies in the superfamily Bovoidea. Chromosoma, 1968, 25, 152-171.
[7] K. Benirschke, A. T. Kumamoto, The chromosomes of the Chinese dhole, Cuon alpinus lepturus Heude, 1892. CIS(Chromosome Information Service), 1980, 29, 22-24.
[8] W. Moore., P. D. Lambert, The Chromosomes of the Beagle Dog. J. Hered. 1963, 54(6),273-276.
[9] D. H. Wurster, Comparative Mammalian Cytogenetics (K. Benirschke, Ed.). New York, 1969.
[10] K. Fredga, Comparative chromosome studies in mongooses (Carnivora, Viverridae). Hereditas, 1972, 71, 1-74.
[11] A. Mдkinen, Exceptional karyotype in a raccoon dog. Hereditas, 1974, 78, 150-152.
[12] A. R. Perri, K. J. Mitchell, A. Mouton, et al. Dire wolves were the last of an ancient New World canid lineage. Nature, 2021, 591, 87-91.
[13] D. H. Wurster-Hill, Chromosomes of Eight Species from Five Families of Carnivora. J. Mammal. 1973, 54(3), 753-760.
[14] W. A. Thornton, G. C. Creel, The taxonomic status of kit foxes. Texas J. Sci., 1975, 26, 127-136.
[15] A. A. Renzoni, P. Omodeo, Polymorphic chromosome system in the fox. Caryologia, 1972, 25, 173-187.
[16] A. Mдkinen, O. Lohi, M. Juvonen, Supernumerary chromosome in the chromosomally polymorphic blue fox (Alopex lagopus). Hereditas, 1981, 94, 277-279.
[17] T. C. Hsu, K. Benirschke, An Atlas of Mammalian Chromosomes. Springer New York, NY, 1969, 3, 122.
[18] J. G. Way, Record Pack-density of Eastern Coyotes/Coywolves (Canis latrans × lycaon). The American Midland Naturalist, 2011, 165(1), 201-203.
[19] J. G. Way, Taxonomic Implications of Morphological and Genetic Differences in Northeastern Coyotes (Coywolves) (Canis latrans × C. lycaon), Western Coyotes (C. latrans), and Eastern Wolves (C. lycaon or C. lupus lycaon). The Canadian Field-Naturalist, 2013, 127(1).
[20] J. Williams, Characterizing the movement of an individual Canis lupus x Canis latrans hybrid in the northern lower peninsula of Michigan, 2014.
[21] N. Lehman, A. Eisenhawer, K. Hansen, et al. Introgression of coyote mitochondrial DNA into sympatric North American gray wolf populations. Evolution, 1991, 45(1), 104-119.
[22] A. R. Boyko, H. Parker, E. Geffen, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011, 21, 1294-1305.
[23] J. H. Honacki, K. E. Kinman, J. W. Koeppl, Mammal Species of the World: A Taxonomic and Geographic Reference. Allen Press Inc. USA, 1982 (p. 245).
[24] R. K. Wayne, S. M. Jenks, Mitochondrial DNA analysis implying extensive hybridization of the endangered red wolf Canis rufus, Nature, 1991, 351(6327), 565-568.
[25] A. Galov, E. Fabbri, R. Caniglia, et al. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R. Soc. Open Sci., 2015, 2(12), 150450.
[26] P. Gaubert, C. Bloch, S. Benyacoub, et al. Reviving the African Wolf Canis lupus lupaster in North and West Africa: A Mitochondrial Lineage Ranging More than 6,000 km Wide. PLoS ONE, 2012, 7(8), e42740.
[27] A. E. Moura, E. Tsingarska, M. J. Dąbrowski, et al. Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves. Conserv. Genet. 2014, 15, 405-417.
[28] "Species of Wild Animals Bred in Captivity During 1967" International Zoo Yearbook. 1969, 9(1), 215-244. p. 226.
[29] C. Vilà, C. Walker, A. K. Sundqvist, et al. Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity, 2003, 90, 17-24.
[30] R. Khosravi, H. R. Rezaei, M. Kaboli, Detecting Hybridization between Iranian Wild Wolf (Canis Lupus Pallipes) and Free-Ranging Domestic Dog (Canis Familiaris) by Analysis of Microsatellite Markers. Zoological Science, 2013, 30(1), 27-34.
[31] I. Kojola, S. Ronkainen, A. Hakala, et al. Interactions between wolves Canis lupus and dogs C. familiaris in Finland. Wildlife Biology, 2004, 10(2), 101-105.
[32] J. A. Mooney, Understanding the Persistence of Deleterious Variation Across Taxa. Doctor of Philosophy in Human Genetics, University of California, Los Angeles, 2020.
[33] The Argus (Melbourne, Victoria, Australia: 1848-1957) , "First Hybrids at the Zoological Gardens"[N]. Sept. 20, 1934, p. 7.
[34] "species of wild animals bred in captivity during 1965" International Zoo Yearbook, 1967, 7(1), 300-356. p. 310.
[35] S. P. Young, H. H. T. Jackson, The Clever Coyote. University of Nebraska Press, 1978. pp. 121-124.
[36] "species of wild animals bred in captivity during 1973 and multiple generation captive births" International Zoo Yearbook, 1975, 15(1), 315-392. p. 372.
[37] R. G. van Gelder, Mammalian hybrids and generic limits. American Museum of Natural History, 1977. p. 10.
[38] P. S. Gipson, J. A. Sealander, J. E. Dunn, The Taxonomic Status of Wild Canis in Arkansas. Systematic Biology, 1974, 23(1), 1-11.
[39] J. Viegas, Animal Planet News, Jackal-Dog Created for Airport Security. Animal Planet, 2010.11.22.
[40] C. Sillero-Zubiri, D. W. Macdonald, The Ethiopian Wolf: Status Survey and Conservation Action Plan, IUCN/SSC Canid Specialist Group, 1997.
[41] T. Roosevelt, Through the Brazilian Wilderness. Skyhorse Publishing, 2014. p. 145-146.
[42] J. R. Castelló, C. Sillero-Zubiri, Canids of the World: Wolves, Wild Dogs, Foxes, Jackals, Coyotes, and Their Relatives. Princeton University Press, 2018.
[43] B. Pendragon, A review of selected features of the family Canidae with reference to its fundamental taxonomic status. Journal of Creation, 2011, 25(3), 79-88.
[44] A. P. Gray, Mammalian Hybrids. Commonwealth Agricultural Bureaux, 2nd edition, 1972.
[45] L. J. Cole, R. M. Shackelford, Fox Hybrids, Department of Genetics, University of Wisconsin, 1946.
[46] M. S. D. Bitetti, Y. E. D. Blanco, J. A. Pereira, et al. Time Partitioning Favors the Coexistence of Sympatric Crab-Eating Foxes (Cerdocyon thous) and Pampas Foxes (Lycalopex gymnocercus). Journal of Mammalogy, 2009, 90(2), 479-490.
[47] J. W. Dragoo, J. R. Choate, T. L. Yates, et al. Evolutionary and Taxonomic Relationships among North American Arid-Land Foxes. Journal of Mammalogy, 1990, 71(3), 318-332.
[48] A. Mercure, K. Ralls, K. P. Koepfli, et al. Genetic subdivisions among small canids: mitochondrial DNA differentiation of swift, kit, and arctic foxes. Evolution, 1993, 47(5), 1313-1328.
[49] A. MÄKINEN, I. Gustavsson, A comparative chromosome‐banding study in the silver fox, the blue fox, and their hybrids. Hereditas, 1982, 97(2), 289-297.
[50] S. A. Rohwer, D. L. Kilgore, Interbreeding in the Arid-Land Foxes, Vulpes Velox and V. Macrotis. Systematic Biology, 1973, 22(2), 157-165.
[51] (a) M. A. Sovada, L. Carbyn, The Swift Fox: Ecology and Conservation of Swift Foxes in a Changing World. University of Regina. Canadian Plains Research Center, 2003. p. 207.; (b) E. Geffen, A. Mercure, D. J. Girman, et al. Phylogenetic relationships of the fox-like canids: mitochondrial DNA restriction fragment, site and cytochromebsequence analyses. Journal of Zoology, 1992, 228(1), 27-39.
[52] D. Gottelli, C. Sillero-Zubiri, The Ethiopian wolf - an endangered endemic canid. Oryx. 1992, 26(4), 205-214.
[53] L. D. Mech, C. S. Asa, M. Callahan, et al. Studies of wolf x coyote hybridization via artificial insemination. Plos one, 2017, 12(9), e0184342.
[54] S. Gopalakrishnan, M. H. S. Sinding, J. Ramos-Madrigal, et al. Interspecific gene flow shaped the evolution of the genus Canis. Current Biology, 2018, 28(21), 3441-3449.
[55] G. B. Kolenosky, Hybridization between wolf and coyote. Journal of Mammalogy, 1971, 52(2), 446-449.
[56] S. M. Jackson, C. P. Groves, P. J. S. Fleming, et al. The wayward dog: is the Australian native dog or dingo a distinct species?. Zootaxa, 2017, 4317(2), 201-224.
[57] H. A. Bezdek, A red-grey fox hybrid. Journal of Mammalogy, 1944, 25, 90.
[58] U. H. Taron, J. L. A. Paijmans, A. Barlow, et al. Ancient DNA from the Asiatic wild dog (Cuon alpinus) from Europe. Genes, 2021, 12(2), 144.
[59] G. D. Wang, M. Zhang, X. Wang, et al. Genomic approaches reveal an endemic subpopulation of gray wolves in Southern China. iScience, 2019, 20, 110-118.
[60] K. Mallil, F. Justy, E. K. Rueness, et al. Population genetics of the African wolf (Canis lupaster) across its range: first evidence of hybridization with domestic dogs in Africa. Mammalian Biology, 2020, 100(6), 645-658.
[61] C. A. Hofman, T. C. Rick, M. T. R. Hawkins, et al. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis). PLoS ONE, 2015, 10(2), e0118240.
[62] N. S. Goddard, M. J. Statham, B. N. Sacks, Mitochondrial analysis of the most basal canid reveals deep divergence between eastern and western north American gray foxes (Urocyon spp.) and ancient roots in Pleistocene California. PLoS ONE, 2015, 10(8), e0136329.
[63] R. K. Wayne, S. B. George, D. Gilbert, et al. A morphologic and genetic study of the island fox, Urocyon littoralis. Evolution, 1991, 45(8), 1849-1868.
[64] D. M. Reding, S. Castañeda-Rico, S. Shirazi, et al. Mitochondrial Genomes of the United States Distribution of Gray Fox (Urocyon cinereoargenteus) Reveal a Major Phylogeographic Break at the Great Plains Suture Zone. Front. Ecol. Evol. 2021, 9, 666800.
[65] A. MÅKINEN, M. KUOKKANEN, M. VALTONEN. A chromosome-banding study in the Finnish and the Japanese raccoon dog. Hereditas, 1986, 105(1), 97-105.
[66] E. Heppenheimer, R. J. Harrigan, L. Y. Rutledge. Population Genomic Analysis of North American Eastern Wolves (Canis lycaon) Supports Their Conservation Priority Status. Genes, 2018, 9(12), 606.
[67] S. M. Murphy, J. R. Adams, J. J. Cox, et al. Substantial red wolf genetic ancestry persists in wild canids of southwestern Louisiana. Conservation Letters, 2019, 12(2), e12621.
[68] R. F. S. Creed, Observations on Reproduction in the Wild Red Fox (Vulpes vulpes) an Account with Special Reference to the Occurrence of Fox-Dog Crosses. British Veterinary Journal, 1960, 116(11), 419-426.
[69] L. Tchaicka, T. R. O. de Freitas, A. Bager, et al. Molecular assessment of the phylogeny and biogeography of a recently diversified endemic group of South American canids (Mammalia: Carnivora: Canidae). Genet. Mol. Biol. 2016, 39, 442-451.
[70] M. O. Favarini, T. L. L. Simão, G. S. Macedo, et al. Complex evolutionary history of the South American fox genus Lycalopex (Mammalia, Carnivora, Canidae) inferred from multiple mitochondrial and nuclear markers. Diversity, 2022, 14(8), 642.
[71] R. K. Wayne, A. Meyer, N. Lehman, et al. Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals. PNAS, 1990, 87(5), 1772-1776.
[72] Isis: Zeitschrift für alle naturwissenschaftlichen Liebhabereien, 1881, No. 6, p. 48.
[73] D. Gottelli, C. Sillero-Zubiri, D. G. Applebaum, et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Molecular Ecology, 1994, 3(4), 301-312.
[74] T. Wheeldon, B. N. White, Genetic analysis of historic western Great Lakes region wolf samples reveals early Canis lupus/lycaon hybridization. Biol. Lett. 2009, 5, 101-104.
[75] L. Y. Rutledge. Evolutionary origins, social structure, and hybridization of the eastern wolf (Canis lycaon) (Thesis). Peterborough, Ontario, Canada: Trent University, 2010.
[76] H. Krieg, Biologische reisestudien in Südamerika VII. Notiz über einen bastard zwischen hund und pampafuchs (Pseudalopex [Canis] agarae) nebst bemerkungen über die systematik der Argentinisch-Chilenischen füchse. Zoomorphology 1925, 4, 702-710.
[77] J. W. Hody, R. Kays, Mapping the expansion of coyotes (Canis latrans) across North and Central America. Zookeys, 2018, 759, 81-97.
[78] A. H. Freedman, I. Gronau, R. M. Schweizer, et al. Genome Sequencing Highlights the Dynamic Early History of Dogs. PLoS Genetics, 2014, 10, e1004016.
[79] R. I. Pocock, Genus Cuon Hodgs. Fauna of British India: Mammals. Vol. 2, Taylor & Francis, 1941. pp. 146-163.
[80] C. Darwin, The Variation of Plants and Animals under Domestication. Vol. 1, 1868, p. 31.
[81]  Rare black fox likely to be from fur farm&, scientists say. Cambridgeshire, BBC News, 2012.5.5.
[82] A. C. McMaster, Notes on Jerdon's mammals of India. Higginbotham, 1871. p. 55.
[83] T. M. Barnes, M. Karlin, B. M. vonHoldt, et al. Genetic diversity and family groups detected in a coyote population with red wolf ancestry on Galveston Island, Texas. 2022, 22, 134.
[84] B. M. vonHoldt, J. A. Cahill, Z. Fan, et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2016, 2, e1501714.
[85] M. S. Sinding, S. Gopalakrishan, F. G. Vieira, et al. Population genomics of grey wolves and wolflike canids in North America. PLoS Genet. 2018, 14(11), e1007745.
[86] B. M. vonHoldt, K. E. Brzeski, M. L. Aardema, et al. Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast. Molecular Ecology, 2022, 31(21), 5440-5454.
[87] J. Monzón, R. Kays, D. E. Dykhuizen. Assessment of coyote-wolf-dog admixture using ancestry‐informative diagnostic SNPs. Molecular ecology, 2014, 23(1), 182-197.
[88] K.-P. Koepfli, J. Pollinger, R. Godinho, et al. Genome-wide Evidence Reveals that African and Eurasian Golden Jackals Are Distinct Species. Current Biology, 2015, 25, 2158-2165.
[89] A. Nelson. AN EXPLORATION OF THE CANIS LUPUS AND CANIS RUFUS SPECIES BOUNDARY VIA MORPHOMETRICS. Master of Science, Indiana University, 2023.
[90] S. T. Vilaça, M. E. Donaldson, A. Benazzo. Tracing Eastern Wolf Origins From Whole-Genome Data in Context of Extensive Hybridization. Mol. Biol. Evol. 2023, 40(4), msad055.
[91] E. M. Kierepka, S. Preckler-Quisquater, D. M. Reding, et al. Genomic analyses of gray fox lineages suggest ancient divergence and secondary contact in the Southern Great Plains. J. Hered. 2022, esac060.
[92] B. N. Sacks, M. J. Statham, L. E. K. Serieys. Population Genetics of California Gray Foxes Clarify Origins of the Island Fox. Genes, 2022, 13, 1859.



更新日志:

V1.0:
初始版本

V1.1:
1、更正1.0版中的许多错误和不准确的地方,并进行补充;
2、删除“澳洲野犬”条目,其实为灰狼之亚种,并将“三色豺”修正为“非洲野犬”;
3、增加“敏狐”与“食蟹狐”条目;
4、更新的图例与说明。

V1.2:
1、更正1.1版中的许多错误和不准确的地方,并进行补充;
2、删除“印度狼”条目,替换为印度狐(Vulpes bengalensis,2n=60);
3、删去“不育”图例;
4、“伪狐”主要指Pseudalopex gymnocercus,2n=74,潘帕斯狐/河狐。

V1.3:
1、更正1.2版中不准确的地方;
2、为每个物种增加体细胞染色体数一栏,便于速查和对比;
3、为来源不明、内容不完整的资料以及杂交无法进行的情况增加新的图例;
4、新的图例与说明。

V1.4:
1、增加近期被建议独立出来的新物种——非洲金狼(Canis anthus);
2、对于澳洲野狗与印度狼究竟是否是属于灰狼(Canis lupus),仍存争议,本次更新本表将以上物种均独立出来列为一栏。
3、增加每种物种的拉丁学名。

V1.5:
1、更正错误:印度狐染色体数目;
2、增加每种犬科动物所在的“属(Genus)”;
3、插入参考文献,并进行一一对应;
4、将《使用说明》单独列为一张工作表;
5、增加“备注”栏。

V1.7:
1、增加“岛屿灰狐”一栏;
2、增加物种别名、英文名;
3、对于分类学存在争议的物种,列出相应的其他拉丁学名;
4、纠错并补充参考文献。

V1.8:
1、调整图例,增加“野外存在”一栏;
2、将“使用说明”表格移至第一张工作表;
3、规范参考文献格式;
4、增加一栏“拉丁学名4”,并依据最新文献更新现有物种的拉丁学名和分类;
5、依据最新文献,修正黑背胡狼、侧纹胡狼、恐狼所属的属名;
6、错误更正。

V2.0:
1、增加部分近期参考文献;
2、基于大量相关文献,“灰狐”一栏分成两栏,并增加备注;
3、图例说明更新;
4、错误更正。

发表于 2025-9-2 19:33:22
我滴乖乖,这个表格做得也太精致啦
发表于 2025-9-2 19:58:39
jiange123 发表于 2025-9-2 19:33
我滴乖乖,这个表格做得也太精致啦

哈哈谢谢~
您需要登录后才可以回帖 登录 | 立即注册

欢迎光临乐乐小动物乐园!这里是宠物主人、动物迷、动物救助人员及动物科研人员交流互助的论坛,和大家一起感受奇妙的动物世界吧!站长信箱:Sheltie_LeLe@163.com

Archiver|手机版|小黑屋|乐乐小动物乐园

GMT+8, 2025-10-3 12:38 , Processed in 0.075385 second(s), 3 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表